

eurac research

Modelling Grassland LAI

From S1 and S2 using spatial gap-filling

Caroline Göhner¹, Mohammad Hussein Alasawedah¹, Abraham Mejia-Aguilar², Giovanni Peratoner³, Alexander Dovas³, Gabriel Sicher^{3,4}, Laura Stendardi¹, Paulina Bartkowiak¹, Michele Claus¹, Giovanni Cuozzo¹, and Mariapina Castelli¹

¹ Eurac Research, Institute for Earth Observation, 39100 Bolzano, Italy
² Eurac Research, Center for Sensing Solutions, 39100 Bolzano, Italy
³ Laimburg Research Centre, Research Area Mountain Agriculture, Ora, 39040 Bolzano, Italy
⁴ Hagelschutzkonsortium—Condifesa Bolzano, 39100 Bolzano, Italy

BioGeoSAR-2023, 16.11.2023

 \rightarrow sustainable, data-driven agriculture

Mediterranean (IFAPA) and Alpine grasslands (EURAC)

... improve grassland monitoring

scaleagdata.eu

Castelli et al. 2023; Wang et al. 2019; Ali et al. 2016

Sentinel-2 LAI and SMC data

LAI [m²/m²] 0

Soil Moisture data: Greifeneder et al. 2021; Weiss et al. 2020

Imagery: Google, ©2023 CNES / Airbus, Maxar Technologies

eurac research

7

Sentinel-1 features

Band/Feature	Formula	Reference						
VV	-							
VH	_							
ratio	$rac{VH}{VV}$							
RVI	$\frac{4 * VH}{VV + VH}$	Yunjin Kim et van Zyl 2009 / Trudel et al. 2012						
sum	VV + VH	Lourin at al. 2018						
difference	VV - VH							
product	VV * VH							
VH/product	$\frac{VH}{VV * VH}$	Yu et al. 2022						
sum/product	$\frac{VV + VH}{VV * VH}$							
square difference	$VV^2 - VH^2$							

21.04.2021

Ascending square difference

Sentinel-1 and LAI

Ground data

Ground data

- Leaf Area Index (LAI)
- Photosynthetically Active Radiation (PAR)
- Vegetation composition
- Soil moisture
- Sward height
- Yield
- Lodging
- Mowing events

Cluster meadows

Imagery: Google, ©2023 TerraMetrics

Based on Ellenberg & Leuschner 2010

Feature Selection

Feature selection method based on Xu et al. 2022; Raab et al. 2020

Caroline Göhner | Grassland LAI

14

16.11.2023

Feature Selection

								Desce	nding					Ascending										
		doy SM	SM	VH	vv	sum/ prod	RVI	ratio	sum	diff	prod	VH/ prod	square diff	VH	VV	sum/ prod	RVI	ratio	sum	diff	prod	VH/ prod	square diff	
	global																							
	N forest																							
RF	S forest																							
	S valley																							
	S																							
	global																							
	N forest																							
GPR	S forest																							
	S valley																							
	S																							

Global RF

01.07.2021

Gap-filled LAI

Imagery: Google, ©2023 Maxar Technologies

Global RF

01.07.2021

Sentinel-2 LAI

Imagery: Google, ©2023 Maxar Technologies

Field data 01.07.2021.

Global RF

07.07.2021

Sentinel-2 LAI

Imagery: Google, ©2023 Maxar Technologies

Field data 07.07.2021.

Global RF

12.07.2021

Sentinel-2 LAI

Gap-filled LAI

Imagery: Google, ©2023 Maxar Technologies

\rightarrow Mowed on 10.07.2021

Validation

Validation

Sentinel-2 LAI

Gap-filled LAI

Ground data 2021-2022 by Laimburg Research Centre

Validation

Ritten (BZ), R4 2021

Model: RF N_forest

Conclusion & Outlook

- Gap-filling S2 LAI using S1
- Feature selection: S1 product & square difference
- Overestimation in early & late growing season

All meadows Improved drought index

Imagery: Google, ©2023 TerraMetrics

References

Ali, I. et al. 2016. Satellite remote sensing of grasslands: from observation to management. JPECOL 9, 649–671. https://doi.org/10.1093/jpe/rtw005

Caballero, G. et al. 2022. Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles. Remote Sensing 14, 5867. https://doi.org/10.3390/rs14225867

Castelli, M. et al. 2023. Insuring Alpine Grasslands against Drought-Related Yield Losses Using Sentinel-2 Satellite Data. Remote Sensing 15, 3542. <u>https://doi.org/10.3390/rs15143542</u>

- Ellenberg, H., & C. Leuschner 2010. Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. Utb, 8104.
- Greifeneder, F. et al. 2021. A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sensing 13, 2099. <u>https://doi.org/10.3390/rs13112099</u>

Kotlarski, S. et al. 2023. 21st Century alpine climate change. Clim Dyn 60, 65–86. <u>https://doi.org/10.1007/s00382-022-06303-3</u>

Laurin, G.V. et al. 2018. Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data. J. Appl. Rem. Sens. 12, 1. https://doi.org/10.1117/1.JRS.12.016008

Lee, J.-S. et al. 2009. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 47.

openEO. URL <u>https://openeo.org/</u>

Raab, C. et al. 2020. Target-oriented habitat and wildlife management: estimating forage quantity and quality of semi-natural grasslands with Sentinel-1 and Sentinel-2 data. Remote Sens Ecol Conserv 6, 381–398. https://doi.org/10.1002/rse2.149

ScaleAgData. Upscaling agricultural sensor data for improved monitoring of agri-environmental conditions. URL https://scaleagdata.eu/en (accessed 11.6.23).

Trudel, M. et al. 2012. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Canadian Journal of Remote Sensing, 38:4, 514-527, https://doi.org/10.5589/m12-043

Wang, J. et al. 2019. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing.

Weiss, M. et al. 2020. S2ToolBox Level 2 products: LAI, FAPAR, FCOVER V2.1.

Xu, C. et al. 2022. A Comprehensive Comparison of Machine Learning and Feature Selection Methods for Maize Biomass Estimation Using Sentinel-1 SAR, Sentinel-2 Vegetation Indices, and Biophysical Variables. Remote Sensing 14, 4083. <u>https://doi.org/10.3390/rs14164083</u>

Yunjin Kim, Van & J.J. Zyl, 2009. A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sensing 47, 2519–2527. https://doi.org/10.1109/TGRS.2009.2014944

Zhao, Y. et al. 2020. Grassland ecosystem services: a systematic review of research advances and future directions. Landscape Ecol 35, 793–814. https://doi.org/10.1007/s10980-020-00980-3

Thank you!

Caroline Göhner

Institute for Earth Observation cgoehner@eurac.edu

www.eurac.edu scaleagdata.eu

eurac research

The research leading to these results has received funding from the **Horizon Europe** program under grant agreement no **101086355**.

The activities of Laimburg Research Centre were funded by the Action Plan 2016–2022 for Research and Training in the Fields of Mountain Agriculture and Food Science of the Autonomous Province of Bolzano/Bozen.