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Acronyms and Abbreviations 

 

Acronyms and Abbreviations 

AgMIP Agricultural Model Intercomparison and Improvement Project 

AIM Agriculture Information Model 

APSIM The Agricultural Production Systems sIMulator (Simulation model) 

C Carbon 

CAP Common Agricultural Policy 

CERES Crop Environment Resource Synthesis (Simulation model) 

CNHi CNH Industrial Belgium 

DEMETER Horizon 2020 project on Internet of Things platform for smart farming 

D Deliverable 

DGG Discrete Global Grid 

DHI DHI A/S (Denmark) 

DSS Decision Support System 

DSSAT Decision Support System for Agrotechnology Transfer (Simulation model) 

EC Electric Conductivity 

EO Earth Observation 

ET Evapotranspiration 

ETSI European Telecommunications Standards Institute 

EU European Union 

FMIS Farm Management Information System 

H3 Hexagonal hierarchical geospatial indexing system 

IACS Integrated Administration and Control System 

ICASA The International Consortium for Agricultural Systems Applications 

ICCS Institute of Communication and Computer Systems  

ISOBUS ISO 11783, standardised communication protocol in agriculture 

JSON JavaScript Object Notation, data interchange format 

KMI Royal Meteorological Institute of Belgium   

LAI Leaf Area Index 

LPIS Land Parcel Identification System 

Luke Natural Resources Institute Finland 

M Month 

MIT Massachusetts Institute of Technology 

N Nitrogen 

NDVI Normalized Difference Vegetation Index 

NGSI-LD Next Generation Service Interface – Linked Data (Context Information 
Management API) 
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NP Neuropublic SA 

OGC Open Geospatial Consortium 

PBM Process Based Model 

PTF PedoTransferFunction 

R&D Research and Development 

RIL Research and Innovation Lab 

SAFY Simple Algorithm for Yield Estimates (Simulation model) 

SDK Software Development Kit 

SPAD Soil Plant Analysis Development 

STICS Simulateur mulTIdisciplinaire pour les Cultures Standard (Simulation model) 

TERRA-REF The Transportation Energy Resources from Renewable Agriculture 
Phenotyping Reference Platform 

UGent Universiteit Gent 

UI User Interface 

USDA United States Department of Agriculture 

VRI IES Foundation "Institute for Environmental Solutions" 

WOFOST WOrld FOod STudies (simulation model) 

WP Work Package 
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 Introduction 

1.1. Project overview 

ScaleAgData is a response to the call HORIZON-CL6-2022-GOVERNANCE-01-11 Upscaling (real-time) 
sensor data for EU-wide monitoring of production and agri-environmental conditions. The 
ScaleAgData project will run from January 2023 till December 2026 and consists of a consortium of 
twenty-six partners from fourteen countries. The vision of ScaleAgData is two-fold. On one hand, it 
wants to obtain insights into how the complex data streams should be governed and organised 
(governance call). On the other hand, it aims to develop the data technology needed to scale data 
collected at the farm level to regional datasets, agri-environmental monitoring, and the management 
of agricultural production.  
 
To do so, ScaleAgData has five objectives:  

• Developing innovative approaches for collecting in-situ data and applying data technologies. 

• Enabling and promoting data sharing along the entire data value chain. 

• Demonstrating how sensor data can be scaled to agri-environmental data products at the 
national, regional or European level. 

• Demonstrating the benefit of the improved monitoring capacities in a precision farming 
context. 

• Demonstrating the benefit of upscaled regional datasets for the agricultural sector in general. 
 
During its lifecycle, the project will explore seven innovation areas: innovative sensor technology, edge 
processing, data sharing architecture and data governance, satellite data augmentation, from data 
assimilation to service development, privacy-preserving technology, and data integration 
methodologies. 
Six Research and Innovation Labs (RILs) have been identified within the project, across various bio-
geographical regions of Europe, where different data upscaling and integration models or approaches 
will be evaluated and demonstrated. The six RILs are: water productivity, crop management, yield 
monitoring, soil health, grasslands and sustain dairy. Recommendations will be formulated on how 
such integrated datasets can be capitalized to help national and regional policy making to strengthen 
both the competitiveness and sustainability of European agriculture.  

1.2. Scope of the document 

This document provides a methodological framework that employs digital twin modeling. The 

framework combines and integrates multiple data sources into actionable information for farming. 

The provided guidelines, digital twin data model, and Python codes enable RI Labs to validate these 

technologies before being implemented.  

Work described in this deliverable lays the basis for developing new data assimilation methods, 
creating automatic calibration of models, and finally creating a framework that enables training of 
intelligent agents for making management decisions based on multiple objectives. 
This deliverable contributes to Innovation Area 5 “From data assimilation to service development”, 
and summarizes work done in WP 4 (Product and service development) Task 4.1 (Data-based farming 
services) within the respective RILs. 
 

1.3. Document structure 

This document is structured as follows:  
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• Section 1 provides a project overview and describes the scope, responsibilities, and structure 
of this deliverable. 

• Section 2 provides a brief overview on the digital twin approach, both in context of smart 
farming and in the context of potential application cases within the ScaleAgData project. 
Multiple data sources, use of data models/vocabularies, and suitable modeling approaches 
are presented. Three potential application cases from the ScaleAgData RILs are described. 

• Section 3 contains a description of and links to reference software for 1) entering and 
retrieving field data into/from a digital twin data model and 2) setting up the first worked 
example on wheat crop model, based on a co-operation with one of the RILs (Yield Monitoring 
Lab).  

• Section 4 contains a list of references. 
 

1.4. Evolution of the document 

Version 1.0 of this document, submitted on 30 June 2024, described the developments in the initial 
phase (M1-M18) of the ScaleAgData project.  
 
The present version of the document, version 1.1, submitted on 27 January 2025, includes minor 

additions that take the comments of the EC and external reviewers on this deliverable into account. 

References to clarify co-operation between work packages are added to introduction of Chapter 2. 

Methodological framework and its implementation, and to 2.4.2.1. Interoperability. Description on 

what developments were already available before the implementation and what developments were 

performed in the project is added to 3.1 Software description.  

 

An updated version of this deliverable, version 2.0, is foreseen for December 2025 and will contain 

more general guidelines for a larger audience. 
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 Methodological framework and its implementation 
_ 
This chapter introduces the concepts of a digital twin and introduces potential modeling approaches, 
data sources and the use of a dedicated data model as an interface between different data sources 
and model outputs. Initial design considerations are presented for several potential application cases. 
The design work of these application cases was initiated in WP2 co-design workshops and planning 
meetings and contributed to the project architectural design. Analysis-ready EO data for modeling was 
brought available by WP3, and planning and carrying out the data collection for model input and 
calibration was and will be carried out in WP5. 
 
The following steps were identified for developing a digital twin for supporting data-based farming 
services in the ScaleAgData project: 

1. Definition of the target system and decision problem including exact decisions that are 
expected from the model and the required spatial and temporal resolution. Estimating the 
expected pay-off from developing the system. 

2. Defining the physical counterpart to be modeled and available digital and analog data sources. 
Evaluation of the relevance of available data sources for the decision problem and 
identification of additional data collection requirements. Iterative mapping between the 
obtainable data sources and selection of suitable models considering also the available data 
collection resources and scaling up potential of the solution. 

3. Identification of suitable models. The selection of a model depends on the decision problem, 
system definition and data availability. 

4. Defining a data model for unified representation of model input data sources and digital twin 

outputs. 

5. Evaluation of the scaling up potential of the solution. This evaluation will also affect the choice 
of data collection and model selection. 
 

These steps were applied to several case studies and are explained under section 2.5 “Potential 
application cases.” 

2.1. Digital twins 

A digital twin is a combination of measured data and models, replicating the state of an object in real 
time. Digital twins are used to observe processes that are difficult to measure directly, or in planning 
and optimization of products or processes. The concept of digital twin is used in various specific 
applications in agriculture. 
Several Decision Support Systems (DSS) tools which combine sensor data or EO data with process-
based models (PBMs) of e.g., crop development or disease risk prediction, have already been 
developed and some are also already in use by farmers (Verdouw, C. et al. 2021). These systems are 
mainly focused on monitoring the system state with limited predictive capabilities (Pylianidis et al. 
2021).  
ScaleAgData aims to develop a methodological framework for combining multiple models and sensor 
data sources into prescriptive digital twins, enabling multi-objective (e.g. maximizing yield while 
minimizing nutrient emissions) decision making on management actions. Methods for automatically 
initializing and calibrating well known simulation models such as APSIM (Holzworth et al. 2014) and/or 
WOFOST (de Wit et al. 2019) will be developed based on a combination of existing data sources (soil 
scanning, machine operations, e.g. ISOBUS tasks, and EO data products). 
The potential of digital twins for supporting smart farming operations has been recognized recently 
and the potential of the concept has been demonstrated in early applications. Precision farming 
technology enables site specific management (e.g. fertilization, working depth) based on e.g. yield 
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maps, soil scans, soil sensors and remote sensing. However, many decisions are currently made 
individually by each farmer, and the effects of different decisions are difficult to assess as each location 
in a field has specific characteristics (e.g. soil type), and each year is different. 
Use of digital twins in agricultural research opens new possibilities to observe farming systems and to 
develop and apply modeling for projecting the responses of the systems to altered management or 
changing environment. For the agricultural sector, new economic and environmental gains can be 
acquired through technology transfer and the use of new decision support tools that help optimizing 
farming operations. 
 

2.2. Modeling approaches 

Digital twins need accurate real-time models of the target system. We provide a brief overview of 
used and potential approaches in the context of precision farming. 

2.2.1. Biophysical models 

Several process-based biophysical cropping system models or agroecosystem models have been 
developed. These models aim to describe how crops interact with the environment and agronomic 
management. Crop models have several use cases including simulating crop yields under climate 
change, understanding and optimizing crop rotations, designing plant breeding targets and optimizing 
management. Well known models include APSIM (Holzworth et al. 2014), STICS (Brisson et al. 2003), 
WOFOST and DSSAT. 
Crop models typically simulate the daily total biomass potential of the crop based on global solar 
radiation, simulated canopy light interception and ambient temperature. The actual growth is then 
obtained by limiting the total potential with water or nutrient stress. The simulated growth is then 
partitioned to different organs based on the phenological stage. Complex crop models have quite high 
requirements for calibrating new cultivars and for setting the soil properties, e.g. water holding 
capacity and soil nutrient contents. In very simple crop models, such as SAFY (Duchemin et al. 2008), 
the phenology is greatly simplified, only the total biomass is simulated and fixed constants are used 
to estimate e.g. grain yield. The use of simple crop models can be a good option in data-constrained 
scenarios and in combination with machine learning models. 
Simulations are typically point-based; however, the models can be spatialized for precision farming 
use cases by using a dense grid. Spatial correlation of observation is typically ignored or accounted for 
in postprocessing of model outputs. Biophysical models have been shown to be useful for 
management decisions when calibrated correctly. Gobbo et al. (2022) present an approach to use crop 
model and N uptake maps for planning site-specific fertilization, and an approach for using APSIM in 
digital twins was developed at Luke (Bloch et al. 2023) and it will be extended in ScaleAgData. 

2.2.2. Machine learning and hybrid models 

Machine learning models learn the relationships between input and output variables from training 
data. The advantage of using machine learning is that the models can learn complex nonlinear 
relationships between variables, given enough training data, however the models can perform very 
poorly and yield unexpected results outside of the domain of the training dataset. 
The key challenge in agricultural applications is to obtain training data that covers the variability in 
data across weather conditions, soil types and management alternatives. One possible approach is to 
conduct management response trials and use the data as input for machine learning models. For 
instance, Tanaka et al. (2024) compared the performance of several different models setting 
economically optimal site-specific fertilization rates and concluded that model predictions were very 
sensitive to the choice of algorithm and the selection of covariates. 
One promising way to tackle the need for extensive training data is to combine process-based and 
machine learning approaches. This can be done in several ways: simulation models can be used to 
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generate training data for a machine learning model to augment observational data (Pylianidis et al. 
2022), a machine learning model can be integrated into a process-based model to represent part of 
the processes, e.g. phenology (Droutsas et al. 2022), or simulation model outputs can be used as a 
feature for a machine learning model. In ScaleAgData, these approaches will be compared to pure 
process-based models. 

2.3. Data sources 

Data collection on agricultural fields of operational farms has rapidly increased during the last decades 
(Kayad et al. 2022). Crop monitoring throughout the season can be carried out in real time using 
remote sensing (drones, aerial and satellite imagery) and finally by crop monitors in harvesters. Crop 
growing conditions such as temperature or water availability can be monitored directly in real time 
using sensors, and parameters such as nutrient availability or pest pressure can be monitored using a 
combination of data and models. Soil scanning campaigns map variation in many soil parameters. All 
these data sources and streams from different sensors enable building a digital twin for smart farming. 
Data to be integrated into a digital twin varies by model implementation and availability of useful data. 
Table 1 below lists the types of data from cultivated fields that we now foresee to be utilized in digital 
twins during this project, and the role of each in modeling. ScaleAgData RILs have extensive set-ups 
for sensor installation beyond what is listed here or available on an operational farm (see deliverable 
D3.2 and the catalogue within). 
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Table 1. Data sources for Digital Twins 

 
Field borders Field borders are used and produced in multiple phases of a cultivation process. Many FMIS 

contain field border data. Also, ISOBUS task files for each cultivation task contain spatial 
information about where each task was carried out and whether the intensity varied in the 
plot. In EU countries, accurate field borders for CAP eligible parcels are part of the Land 
Parcel Identification System (LPIS) and used in the Integrated Administration and Control 
System (IACS). Borders define the area of interest for modeling and boundaries for 
retrieving EO data. 

Soil properties Spatial variation in soil’s physical and chemical properties (such as texture, water holding 
capacity or amount of organic matter) affect water and nutrient intake of the crop. Soil 
maps can be interpolated from georeferenced soil samples, and for some soil parameters 
they are acquired via soil scanning. In the context of digital twins, soil properties are static 
information during the growing season and used for model initialization. Observations at 
differing depths enable predicting, for instance, water movement and availability. 

ISOBUS task files Task files are recorded by tractors and their implements and store georeferenced 
information on cultivation events, including sowing dates, cultivars, seeding densities, and 
fertilizers. ISOBUS task files from sowing and fertilization tasks are used for model 
initialization and updating during the growing season to obtain fertilization levels and seed 
density. 

Field management data Field management data contains information such as crop type, cultivars, cropping events, 
fertilization, pesticide applications etc. On the farm, field management data is often stored 
and managed digitally in Farm Management Information Systems (FMIS). This data set 
complements and partly overlaps with information contained in task files. Field 
management information is used for model calibration, initialization, and simulation. 

Weather data Weather data on a field originates from a local weather station or from some other 
weather data source. Temperature, solar radiation, and precipitation are the most used 
parameters, but also others such as relative humidity, wind speed and direction, as well as 
air pressure may be of interest. Historical weather data is used in running the model and 
weather forecasts for predicting future state. 

Soil sensor data Data streams from soil sensors, measuring parameters such as soil temperature, moisture, 
and salinity, can be used for data assimilation when running the model for yield forecasts, 
and directly as input for a controller in crop irrigation. 

Satellite remote sensing 
products 

Indices such as NDVI and different EO-based estimates are based on current satellite 
information. For cropping purposes, interesting products include crops’ biophysical 
parameters as well as soil water and crop water stress related parameters. Depending on 
the desired set-up, they can be used in running the model, model calibration, and data 
assimilation. 

Drone products Drone based imagery can provide accurate crop status information covering each field. 
Data can be used to augment or replace EO-based data products. The main advantage of 
drone data can be higher spatial and temporal resolution. 

In situ crop observations Crop information can be extracted from samples taken during growing season or at harvest. 
Physical samples may be analyzed in the laboratory, or observations can be made by 
scanning the crop or plant/leaves optically with hand-held devices. The acquired 
information is useful for quantifying crop status, for instance the nutrient needs. In digital 
twins, these observations can be used in model calibration and also in data assimilation, if 
they are available in near real time 

Yield maps Yield maps are data products created by combine-harvesters equipped with sensors and 
possibly enriched with other sources of data such as satellite-based information. Maps 
contain spatial information on yield quantity and sometimes quality. Yield maps and data 
streams from harvester yield sensors act as feedback to modeling and are used in 
calibration. Historical yield maps can potentially be useful for model initialization by 
estimating legacy effects from previous crops, or for evaluating the model’s capability to 
identify areas of (recurrent) poor crop performance. 
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2.4. Data model 

2.4.1. Harmonizing digital twin input and output data with a data model 

As described in chapter 2.2, digital twins can utilize different process-based, machine learning and 
hybrid models, i.e. digital system models. The input data for these models will come from varying 
suppliers and can have multiple different formats (as listed in chapter 2.3). The data format must be 
changed to match the specific format required by each digital system model. Applying a digital twin 
to a new use case should be easy and changes in digital system model and data sources should be 
flexible. While data sources and digital system models are changing, the required input and the 
provided output datasets for the digital twin should be clear. Existing standard data models and 
ontologies for agricultural applications are used as a basis and they are extended both for the use 
cases presented earlier in ScaleAgData D3.1, and for the use in the digital twin as described here. The 
digital twin has specific data requirements not considered in D3.1., so a specific digital twin data model 
needed to be declared. The interoperability of the digital twin data model with D3.1 is discussed in 
more detail in chapter 2.4.2.1. 
The digital twin data model describes the general data requirements and formats that data sources 
need to adhere to. In every use case, the input data is first converted to a harmonized digital twin data 
model format. The digital twin data model should follow existing ontologies and vocabularies as much 
as possible, e.g. ICASA for crop vocabulary. Once the data is in this harmonized digital twin data model 
format, the data can be altered further to formats required by each digital system model. Conversion 
of data from digital twin data model -format to the model-specific formats required by each digital 
system model is to be carried out automatically with code. 
End users, in this case the ScaleAgData RILs, adopting a digital twin, should convert their source data 
to a declared digital twin data model format. After that, the digital twin with its multiple digital system 
model possibilities is available without further data formatting. Also, a digital twin provides outputs 
in a published digital twin data model format, not in varying output formats specific for each digital 
system model, enabling straightforward output data usage. Figure 1 visualizes the purpose of the 
digital twin data model. 
 

 
 

Figure 1. Digital twin data model usage between heterogenous data source inputs, digital system 
model and digital twin output. 

2.4.2. Technical implementation and interoperability 

2.4.2.1. Interoperability 

The technical implementation of digital twin data model is in line with D3.1 interoperability 

requirements in chapter 2.5. D3.1 interoperability refers mainly to semantic interoperability, which 

can be improved by specifying data and data models. In D3.1 the extendable DEMETER AIM (Palma et 

al. 2022) ontology is chosen. The Open Geospatial Consortium (OGC) is also setting up an AIM 

Standard Working Group (https://www.ogc.org/requests/public-comment-requested-agriculture-

information-model-standards-working-group-charter/, https://github.com/opengeospatial/aim-

swg). As the DEMETER AIM ontology does not consider data requirements of specific digital system 

models, a separate digital twin data model is required for the digital twin and its digital system models. 

https://www.ogc.org/requests/public-comment-requested-agriculture-information-model-standards-working-group-charter/
https://www.ogc.org/requests/public-comment-requested-agriculture-information-model-standards-working-group-charter/
https://github.com/opengeospatial/aim-swg
https://github.com/opengeospatial/aim-swg
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The need for digital twin data model was agreed and its interoperability with DEMETER AIM was 

planned with WP3. 

Entity is an informational representative of something existing in the real world (ETSI, 2021). Digital 
twin data model entities can be mostly linked to DEMETER AIM entities, and additional entities 
required by digital system models are added as extensions, see example in Figure 2. Figure 2 presents 
the link between digital twin data model FieldParcel entity and DEMETER AIM AgriParcel entity. Some 
attributes required by digital system models are missing from the DEMETER AIM entities. The missing 
attributes are added to the digital twin data model entities, like attributes category, h3resolution, 
h3parcel and official parcel ID are added to FieldParcel entity in Figure 2. DEMETER AIM and additional 
entities are also used in D3.1 chapter 2.5.4 Reuse of AIM in ScaleAgData. 
 
 

 

Figure 2. Digital twin data model compatibility with DEMETER AIM ontology 

 

2.4.2.2. Entity specifications 

All digital twin data model entities can be transferred through the same NGSI-LD context brokers. 
Context broker is a component implementing NGSI-LD interfaces, like saving and fetching the entities 
(ETSI, 2021). The entities defined so far are briefly described in Table 2. These entities are created with 
soil properties, crop management and field boundary data mentioned in Table 1. Data sources 
excluded from this round of entity specifications may come from standardized files or will be added 
to the digital twin data model in the next iteration of ScaleAgData and presented in V2 of this 
document. If a vocabulary and ontology were used as a basis for an entity, it is mentioned in the table. 
If the existing ontologies did not sufficiently meet the requirements, some entities were defined 
manually from scratch. The digital twin data model, including entity specifications and example 
Jupyter notebook, is part of the reference software. Vocabularies and ontologies mentioned in Table 
2 are: 
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• Smart Data Models AgriFood vocabulary  
(https://smart-data-models.github.io/dataModel.Agrifood/), 

• TERRA-REF ICASA ontology  
(https://terraref.github.io/icasa/1.0-alpha/core/), 

• AgMIP ICASA vocabulary 
(https://docs.google.com/spreadsheets/u/0/d/1MYx1ukUsCAM1pcixbVQSu49NU-LfXg-
Dtt-ncLBzGAM/pub?output=html). 

 

Table 2. Entities of the digital twin data model 

Entity Vocabulary Ontology Extensions AIM counterpart 

AgriFarm Smart Data 
Models Agrifood 

-   AgriFarm 

FieldParcel -  -  AgriParcel 

SoilProfileLayer AgMIP ICASA TERRA-REF ICASA  Soil 

Genotype AgMIP ICASA TERRA-REF ICASA  CropSpecies 

TillageEvent AgMIP ICASA TERRA-REF ICASA X AgriParcelOperation 

Planting AgMIP ICASA TERRA-REF ICASA X AgriParcelOperation 

FertilizerApplication AgMIP ICASA TERRA-REF ICASA X AgriParcelOperation 

OrganicMaterial 
Application 

AgMIP ICASA TERRA-REF ICASA X AgriParcelOperation 

HarvestEvent AgMIP ICASA TERRA-REF ICASA X AgriParcelOperation 

 

2.4.2.3. Spatial representation 

Since our digital twin describes variation within a field, a spatial representation of a field is required. 
The technical implementation should be computationally efficient, with a fixed grid location and 
suitable grid resolution. The digital twin data model supports running the model either at parcel level 
or using a discrete global grid (DGG) system H3 (https://h3geo.org/), see Figure 3 for example. H3 is a 
hexagonal hierarchical geospatial indexing system that stores cell indexes instead of coordinates, 
which makes spatial queries more efficient. The system is also supported by several geospatial 
databases and mapping libraries. H3 grid cells have a fixed location and shape, however, the cell area 
varies relative to its position in the grid’s icosahedron vertices. In the case of H3 resolutions, 11 (~0.2 
ha) and 12 (~0.03 ha) are possible resolution choices for precision farming applications, but the digital 
twin data model can easily be extended to support other local or global grid systems. 
 

 

https://smart-data-models.github.io/dataModel.Agrifood/
https://terraref.github.io/icasa/1.0-alpha/core/
https://docs.google.com/spreadsheets/u/0/d/1MYx1ukUsCAM1pcixbVQSu49NU-LfXg-Dtt-ncLBzGAM/pub?output=html
https://docs.google.com/spreadsheets/u/0/d/1MYx1ukUsCAM1pcixbVQSu49NU-LfXg-Dtt-ncLBzGAM/pub?output=html
https://h3geo.org/
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Figure 3. Example of H3 spatial representation of a yield map with H3 grid resolution 11 

2.5. Potential application cases 

The methodological framework will be tested together with the RILs. The following application cases 
have been defined during the 1st iteration phase of the project. First one of these application cases 
(co-operation with Yield Monitoring Lab) has now proceeded to a stage where the example code for 
setting up the simulation can be presented (Chapter 3). For the Water Productivity Lab and Crop 
Management Lab, the work will now continue according to each RIL:s schedules. The experiences 
gathered here will be translated into new or updated guidelines in the second version (V2) of this 
document. 

2.5.1. Yield monitoring lab 

2.5.1.1. Target system and decision problem 

This use case in cooperation with CNHi and UGent focuses on simulating spatial variation in yield 
estimates of winter wheat. Yield sensors that are installed on harvesters are often prone to 
inaccuracies resulting in incomplete yield maps. The calibration of the sensors is not always very 
accurate, making it difficult to compare data collected from different sensors. Combining data from 
multiple harvesters/sensors operating on a single field can result in erroneous yield maps. The aim of 
using a digital twin is to simulate yield variation and wheat protein content variation within a field 
based on the spatial variation in EO data. Missing data in yield maps provided by the harvester sensors 
can then be estimated based on the yield variation estimates from the digital twin model. Modeled 
yield forecasts, as well as crop and nutrient status during the growing season can support variable rate 
fertilization application. 

2.5.1.2. Physical counterpart / characteristics  

The field data that are used to set up this digital twin model are collected on a set of wheat fields 
provided by CNHi and located in and around Nijvel (Belgium). Historical data from 2022 or 2023 (yield, 
soil EC, vegetation index) are available for 8 fields. Soil moisture and evapotranspiration estimates for 
these fields are provided by DHI. Daily weather station data (minimum, maximum and average 
temperature, relative humidity, wind speed, precipitation, and radiation; interpolated data from 
several weather stations) are provided by KMI. 
In addition, a more extensive dataset is collected during the summer of 2024 on 4 fields. Sensor data 
(yield, soil EC, vegetation index) and management data is again provided by CNHi. Soil moisture and 
evapotranspiration data will be provided by DHI and weather station data by KMI. UGent is responsible 
for additional measurements. Six locations on each field are subjected to measurements every month 
(Soil moisture, soil N content, plant fresh and dry weight, plant N content, leaf characteristics 
(chlorofyll, SPAD, ...), LAI). 

2.5.1.3. Expected pay-off for creating a digital twin for the target system 

The initial motivation for this case is to estimate spatial variation in yield to fill in yield maps with 
missing data. However, it provides the opportunity to use the developed model for other applications 
as well, such as improving variable rate fertilizer maps, or providing farmers who do not have yield 
sensors on their harvesters with an estimation of the yield variation in their field. 

2.5.1.4. Types of models  

For estimating the spatial variability, any model able to simulate differences in yield based on spatial 
variation present in EO data is suitable for this case study, and a simple process-based model or a 
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machine learning model could suffice. For supporting optimal nitrogen application rates, the model 
needs to provide reliable biomass and protein yield estimates; in this case a more complex model, 
such as APSIM or a hybrid model, may be more suitable. 

2.5.1.5. Potential scaling up of the approach 

Key-point in scaling up is to nullify the need to perform in-field measurements. This case study can be 
used to test if weather station data and EO data suffice to provide accurate estimates of yield variation 
in a field. The absolute value of the yield estimates is of less importance as yield sensor data will often 
not be available for a farmer. Also, the aim of this application case is to fill in gaps that are due to 
missing sensor data. Relative yield values within a field are more important, and more feasible, since 
a cultivar-specific calibration is not possible without in-field measurements. 

2.5.2. Water productivity lab 

2.5.2.1. Target system and decision problem 

This use case, in cooperation with IES and MIGAL, is targeting to optimize irrigation of peppermint in 
Latvia and quinoa in Israel by predicting potential yield / biomass as well as crop water status (normal 
/ stressed). The aim is to support irrigation decision making to maximize yield and minimize water 
consumption. It is expected to demonstrate at least 20% increase in productivity and at least 20% 
decreased water consumption using the developed support system. 

2.5.2.2. Physical counterpart / characteristics 

Field data are collected on individual cultivated and irrigated fields situated in Latvia (peppermint case) 
and Israel (quinoa case) with an average size of 1 ha. At least four different irrigation regimes are 
tested in these fields. Local meteorological stations are located near the fields for continuous 
monitoring of natural precipitation, air temperature, humidity, pressure, wind speed and direction as 
well as solar irradiation. Soil moisture and temperature probes are placed in each field in ~10 cm 
depth. Data acquisition frequency is at least twice an hour. In parallel, airborne spectral and thermal 
data acquisition is planned for potential spatial upscaling of the point-based results to show result 
variation within fields. It is also planned to explore the potential of satellite data (ET, soil moisture and 
vegetation indices data products) to upscale the model to a larger area. 

2.5.2.3. Expected pay-off for creating a digital twin for the target system 

Timely information on crop status is required to more support effective irrigation control, which would 
lead to minimization of water consumption while maximizing the yield. 

2.5.2.4. Types of models  

Any models able to predict yield and water status of the target crop, primarily, based on 
meteorological data, secondarily, based on EO data could be used as a baseline. 

2.5.2.5. Potential scaling up of the approach 

It is expected to obtain the best prediction performance when onsite meteorological and soil sensor 
data will be used. However, it is planned to test the upscaling potential of the model in a simplified 
way based on EO data products – ET, soil moisture, vegetation indices. 



 

Deliverable 4.2. Data-based farming services. V1 

  19 

2.5.3. Crop management lab 

2.5.3.1. Target system and decision problem 

The target of this use case is the support of crop management, by integrating data collected by IoT 
sensors, EO imagery and farm log data, aiming at the optimization of agricultural practices. Also, it will 
support policy makers to promote more efficient and sustainable agricultural practices. 

2.5.3.2. Physical counterpart / characteristics  

Data are collected on wheat fields located in Northern Greece, in the municipality of Kilkis. In total, 4 
pilot parcels are included in the research with an average field size of 2.0 ha. In two of the pilot parcels, 
IoT stations are installed, continuously collecting data about the atmospheric and soil conditions of 
the fields, during the growing period. Also, in all 4 parcels farm log data regarding cultivation practices 
and phenological stage of the plants are being recorded. 

2.5.3.3. Expected pay-off for creating a digital twin for the target system 

The main motivation for this simulation is to analyse the variation of nutrients and water within the 
fields and promote more efficient use of available resources. Through this, the expected yields will be 
increased while the environmental footprint of the farms will be reduced. At a higher level, policy 
makers will be provided with the data needed to support best agricultural practices and programs.  

2.5.3.4. Types of models 

Several models could be utilized for the simulation of crop growth, soil dynamics, weather conditions 
and all the factors that are related to crop management. APSIM is one of the suitable models for this 
application, but also other models could be employed. 

2.3.3.5. Potential scaling up of the approach 

Scaling up of this approach involves extending the application of the digital twin from individual farms 
to larger regions, such as administrative regions. This scaling up can lead to the achievement of 
broader benefits in agricultural productivity and sustainability and the promotion of more cost-
effective and environmentally friendly agricultural practices on a larger scale. 
The key points for the up-scaling include the need of extensive data collection and standardization, 
cloud computing resources, the use of enhanced models to analyse the collected data and the 
development of user-friendly platforms through which the users will interact with the system. All the 
above, along with the engagement of a broad range of stakeholders and the adoption of supportive 
policies, will help ensure the successful scaling up of the digital twin approach in crop management. 
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 Reference software 

3.1 Software description 

Reference software for digital twins has been implemented using Python and C# programming 
languages. The code is provided as part of Python package farmingpy 
(https://github.com/TwinYields/farmingpy), which is released under MIT license. The installation 
process is documented, and a Docker file is given for reproducible installation. 
 
The software library provides the following functionality: 

• Interfacing APSIM simulation model for setting up high resolution spatial simulations, running 
model ensembles for assimilating EO and sensor data with the APSIM simulation models, 
reading the simulation outputs and optimizing model parameters.  

• Reading ISOBUS task data from tractors and combine harvesters. 

• Unified interface to USDA Rosetta and EUPTF2 pedotransfer function models to estimate soil 
water holding capacity based on soil data available from farms. 

 
C# components are required to interface the APSIM simulation model and are called from Python code 
using the Python.NET library. The user of the library does not need to use C# language, but will need 
to install the dotnet SDK. The interface to EUPTF2 models is implemented by calling the official R 
package (https://github.com/tkdweber/euptf2) using the rpy2 library. The installation process for 
Ubuntu Linux is detailed in the documentation and a docker configuration is provided to use the library 
and run the example code in a reproducible environment. The APSIM interface was significantly 
extended in the ScaleAgData project and entire data assimilation extension for APSIM wheat model 
was implemented and tested, the pedotransfer function interfaces were also implemented in the 
project. Additionally, the documentation for the library was extended and example notebooks were 
produced and published. 
The core modeling component of the library for digital twins is the interface to the APSIM Next 
Generation simulation model. APSIM is very often used with a graphical user interface (UI). However, 
the implementation separates user interface from model implementation to separate C# projects 
(https://github.com/APSIMInitiative/ApsimX). The APSIM interface in the farmingpy library wraps the 
APSIM “Models” library and does not depend on the user interface. However, it is recommended to 
use the APSIM UI to create a base model, which can be modified in the Python library. 
 
Software for the digital twin data model converts field data to NGSI-LD compatible entities defined by 
the schema of the digital twin data model. The schema, defined with OpenAPI specification, is 
converted to Pydantic (https://docs.pydantic.dev/) models. The Pydantic models are used for creating 
NGSI-LD compatible entities, firstly as Python class objects, secondly as JSONs sent to the context 
broker. The documentation for the digital twin data model is currently given in the form of two 
example notebooks. “Data_to_datamodel.ipynb” converts the example data of one field into NGSI-LD 
entities and sends those to a NGSI-LD broker. The notebook “data_from_datamodel.ipynb” then 
retrieves the data from the broker. Example notebooks can be downloaded from Zenodo: 
https://doi.org/10.5281/zenodo.12566023 . 

3.2. Example use case and notebook: Yield lab 

In ScaleAgData, the APSIM (The Agricultural Production Systems sIMulator) Next Generation model 
(Holzworth et al. 2014) was selected for wheat yield estimation in the Yield Lab. The selection was 
based on model completeness, modularity and availability of simulated soil and crop conditions as 
well as number of supported crops. In the future, other crop models and modeling approaches may 
be considered. The APSIM model simulates the whole cropping system including soil nutrient and 

https://github.com/TwinYields/farmingpy
https://github.com/tkdweber/euptf2
https://github.com/APSIMInitiative/ApsimX
https://docs.pydantic.dev/
https://doi.org/10.5281/zenodo.12566023
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carbon flows, water balance and crop development. The development of the crop is divided into 
several phenological stages, which are controlled by model parameters that need to be calibrated for 
each cultivar. The development of different crop organs and C and N allocation between them are also 
simulated. The model simulates all the processes with a daily time step. APSIM simulated the 
development of grain protein based on CERES Wheat model as described in (Asseng et al. 2002). 
 
Example code is provided for interfacing APSIM simulation model ScaleAgData Yield Lab use case as a 
Jupyter notebook “Introduction_to_APSIM_interface.ipynb” on Zenodo 
https://doi.org/10.5281/zenodo.12566023. The notebook provides example code for setting up a 
wheat simulation model including: 
 
• Setting the weather data and simulation date. 
• Setting management data: sowing date, fertilizer amounts and fertilization dates. 
• Setting soil properties based on farmers’ soil data using pedotransfer functions. 
• Changing cultivar parameters which will be adjusted in calibration. 
• Reading simulation model outputs. 
  
The model, as set up in the example, provides grain yield, protein content and harvest date forecasts 
with daily time step. The model also provides estimates of nitrogen stress and water stress which can 
be used to make management decisions. The example code covers initialization of the model and the 
use of model ensembles which can be used in data assimilation.  
 
Figure 4 shows a schematic on how the model will be used in ScaleAgData. The simulation will first be 
initialized based on FMIS and machinery data. Once the model has been initialized it will be run daily 
to simulate crop and field state and provide forecasts. Before initialization, the cultivar used in the 
model needs to be calibrated with historical data. Remotely sensed LAI and potentially other 
biophysical parameters will be assimilated with the model. In the real time setting, historical daily 
weather data, weather forecast for the end of the season and remote sensing data need to be 
obtained separately. 
 
 

 

Figure 4. Schematic view of model use 

https://doi.org/10.5281/zenodo.12566023
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